首页> 外文OA文献 >Non-fluorinated pre-irradiation-grafted (peroxidated) LDPE-based\ud anion-exchange membranes with high performance and stability
【2h】

Non-fluorinated pre-irradiation-grafted (peroxidated) LDPE-based\ud anion-exchange membranes with high performance and stability

机译:非氟化预辐照接枝(过氧化)LDPE基\ ud 具有高性能和稳定性的阴离子交换膜

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Radiation-grafted anion-exchange membrane (RG-AEM) research has predominantly focused on the chemical stability of\udthe polymer-bound positively-charged head-groups that enable anion conduction. The effect of the backbone polymer\udchemistry, of the precursor film, on RG-AEM stability has been studied to a lesser extent and not for RG-AEMs made from\udpre-irradiation grafting of polymer films in air (peroxidation). The mechanical strength of polymer films is generally\udweakened by exposure to high radiation doses (e.g. from a high-energy e–-beam) and this is mediated by chemical\uddegradation of the main chains: fluorinated films mechanically weaken at lower absorbed doses compared to nonfluorinated\udfilms. This study systematically compares the performance difference between RG-AEMs synthesised from a\udnon-fluorinated polymer film (low-density polyethylene – LDPE) and a partially-fluorinated polymer film (poly(ethylene-cotetrafluoroethylene)\ud– ETFE) using the peroxidation method (pre-irradiation in air using an e–-beam). Both the LDPE and\udETFE precursor films used were 25 μm in thickness, which led to RG-AEMs of hydrated thicknesses in the range 52 – 60 μm.\udThe RG-AEMs (designated LDPE-AEM and ETFE-AEM, respectively) all contained identical covalently-bound\udbenzyltrimethylammonium (BTMA) cationic head-groups. An LDPE-AEM achieved a OH– anion conductivity of 145 mS cm-1\udat 80 °C in a 95% relative humidity environment and a chloride Cl– anion conductivity of 76 mS cm-1 at 80 °C when fully\udhydrated. Alkali stability testing showed that the LDPE-AEM mechanically weakened to a much lower extent when treated\udin aqueous alkaline solution compared to the ETFE-AEM. This LDPE-AEM outperformed the ETFE-AEM in H2/O2 anionexchange\udmembrane fuel cell (AEMFC) tests due to high anion conductivity and enhanced in situ water transport (due to the\udlower density of the LDPE precursor): a maximum power density of 1.45 W cm-2 at 80 °C was achieved with an LDPE-AEM\udalongside a Pt-based anode and cathode (cf. 1.21 mW cm-2 for the benchmark ETFE-AEM). The development of more\udmechanically robust RG-AEMs has, for the first time, led to the ability to routinely test them in fuel cells at 80 °C (cf. 60 °C\udwas the prior maximum temperature that could be routinely used with ETFE-based RG-AEMs). This development facilitates\udthe application of non-Pt catalysts: 931 mW cm-2 was obtained with the use of a Ag/C cathode at 80 °C and a Ag loading of\ud0.8 mg cm-2 (only 711 mW cm-2 was obtained at 60 °C). This first report on the synthesis of large batch size LDPE-based RGAEMs,\udusing the commercially amenable peroxidation-type radiation-grafting process, concludes that the resulting LDPEAEMs\udare superior to ETFE-AEMs (for the intended applications).
机译:辐射接枝阴离子交换膜(RG-AEM)的研究主要集中在能够使阴离子传导的聚合物结合的带正电荷的头基的化学稳定性上。已经研究了骨架聚合物,前体膜的化学反应对RG-AEM稳定性的影响,但对于由空气中的聚合物膜的过辐照接枝(过氧化)制得的RG-AEM则没有进行研究。聚合物薄膜的机械强度通常会因暴露于高辐射剂量(例如来自高能电子束)而减弱,而这是由主链的化学\降解引起的:与较低的吸收剂量相比,氟化膜在机械上会减弱到非氟化\ udfilms。这项研究系统地比较了使用过氧化法从\非氟化聚合物膜(低密度聚乙烯– LDPE)和部分氟化聚合物膜(聚(乙烯-四氟乙烯)\ ud– ETFE)合成的RG-AEM之间的性能差异方法(使用电子束在空气中进行预照射)。所用的LDPE和\ udETFE前体膜的厚度均为25μm,这导致水合厚度的RG-AEM的厚度在52 – 60μm之间。\ udRG-AEM(分别指定为LDPE-AEM和ETFE-AEM)含有相同的共价结合的\ ud苄基三甲基铵(BTMA)阳离子头基。 LDPE-AEM在95%相对湿度环境下的OH-阴离子电导率在80°C时为145 mS cm-1 \ udad,在完全脱水后在80°C时的氯离子Cl-阴离子电导率为76 mS cm-1。碱稳定性测试表明,与ETFE-AEM相比,处理\ udin碱性水溶液时LDPE-AEM在机械上的减弱程度要低得多。 LDPE-AEM在H2 / O2阴离子交换\过膜燃料电池(AEMFC)测试中的表现优于ETFE-AEM,这归因于其高的阴离子电导率和增强的原位水传输性(由于LDPE前体的密度较低):最大功率密度在LDPE-AEM \ udalongside铂基阳极和阴极的情况下,在80°C时可获得1.45 W cm-2的电阻(基准ETFE-AEM约为1.21 mW cm-2)。机械强度更高的RG-AEM的开发首次使人们有能力在80°C的燃料电池中对它们进行例行测试(参见60°C \ udd是以前可以常规用于的最高温度)。基于ETFE的RG-AEM)。这种发展促进了非Pt催化剂的应用:在80°C下使用Ag / C阴极,Ag负载为ud0.8 mg cm-2(仅711 mW cm),获得了931 mW cm-2在60°C下获得-2。这份有关使用大批量的基于LDPE的RGAEM合成的第一份报告,采用了商业上可接受的过氧化型辐射接枝工艺,得出的结论是,所得的LDPEAEM优于ETFE-AEM(用于预期的应用)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号